Technical Details

XAAR ELECTRON

- **XAAR 128**
 - High-speed 1/2400 operation
 - 100 dip up to 114 mm with high speed head
 - 25% faster than regular XJ128-80W
 - 70 dip drop available
 - Light-weight and compact, 17.5 mm wide
 - On-board electronics including temperature compensation
 - Low replacement cost.

- **XAAR 500**
 - Prints in any direction
 - Ideal for fast dry and touch-exchanging applications, form print or small barcode printing
 - Flexible and modular construction, connect up to 16 single 7.5 mm printheads or combine printheads in modules of up to 4 (70 mm print height).
 - Maximum print height per controller or controller board is 250 mm
 - 105 dip up to 90 mm with high speed head (setting)
 - 40 or 80 dip, drop size available

XAAR 128 printers

- Prints in any direction
- Ideal for fast dry and touch-exchanging applications, form print or small barcode printing
- Flexible and modular construction, connect up to 16 single 7.5 mm printheads or combine printheads in modules of up to 4 (70 mm print height).
- Maximum print height per controller or controller board is 250 mm
- 105 dip up to 90 mm with high speed head (setting)
- 40 or 80 dip, drop size available

XAAR 500 printers

- Ideal for form print, addressing and large contrast-rich barcode & logo printing
- Flexible and modular construction, connect up to 4 x 7.5 mm printheads for a maximum print height of 200 mm
- 100 dip up to 50 mm
- 40, 60, drop size available

Glossary

What Does It Mean?

- **Inkjet**
 - Xaar uses drop-on-demand inkjet technology (see DOD inkjet technology).
 - DOD Inkjet
 - **Drop-on-Demand**
 - The printhead can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.
 - **Piezo Electric**
 - Mechanical distortion of the material results in the formation of a charge across the material, or vice versa. The most common material in general use is PZT (Lead Zirconium Titanate)
 - **Purging**
 - The process of forcing ink out of the nozzles, either by suction or pressure.
 - **Drop (Redundancy)**
 - This is where a particular area (pixel) can be printed by more than one nozzle. So if a nozzle is blocked the pixel can be printed by the other nozzle. This may take place on different print heads.
 - **Resolution**
 - The amount of detail that can be resolved out of an image, i.e. the number of discrete drops of ink that are fired onto a controlled area of media (dots per inch, dpi).
 - **Sticking**
 - This is the strategy for the managing of edge effects between print swathes. It is often called “touch-stitching” though this term actually describes a sub-set of the various strategies.
 - **Substrate Thickness**
 - The surface to be printed upon for example paper, textile and plastic.
 - **Swathe**
 - The band or line produced by a single nozzle.
 - **Temperature Compensation**
 - The way in which the printhead compensates for changes in the viscosity of ink due to temperature.
 - **UV Curable Inks**
 - The advantage of UV-curable inks is that they “dry” as soon as they are cured they can be applied to a wide-range of substrates.

- **Print swathes**
 - It is often called “Soft-stitching” though this term actually describes a sub-sets of the various strategies.

- **Resolution**
 - The amount of detail that can be resolved out of an image, i.e. the number of discrete drops of ink that are fired onto a controlled area of media (dots per inch, dpi).

- **Stitching**
 - This is the strategy for the managing of edge effects between print swathes. It is often called “touch-stitching” though this term actually describes a sub-set of the various strategies.

- **Substrate Thickness**
 - The surface to be printed upon for example paper, textile and plastic.

- **Swathe**
 - The band or line produced by a single nozzle.

- **Temperature Compensation**
 - The way in which the printhead compensates for changes in the viscosity of ink due to temperature.

- **UV Curable Inks**
 - The advantage of UV-curable inks is that they “dry” as soon as they are cured they can be applied to a wide-range of substrates.

- **Print swathes**
 - It is often called “Soft-stitching” though this term actually describes a sub-sets of the various strategies.

Product Overview

HSAJET® XAAR Piezo Inkjet

- **Xaar Piezo Inkjet** is the HSA range of industrial piece print heads for outer case and product coding.
- Available in a wide range of print heights and configurations, HSA systems provides one of the most flexible product coding solutions for this technology, able to meet the requirements in a wide range of industries.
- **Piezo Injet printers** are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.
- Due to the modular construction, HSA systems can provide piezo inkjet printing from 17.5 mm print height to more than 1000 mm print height from the same controller.
- With a wide range of controllers to choose from, HSA systems can provide piezo inkjet printing from 17.5 mm print height to more than 1000 mm print height from the same controller.
- All printers can be installed either in-line or off-line and offer great flexibility due to individual controlling of each head.

HSAJET® XAAR key-features

- Low cost per print.
- High uptime - ink change while printing.
- Robust and reliable printers, almost no maintenance.
- Very simple setup and alignment, up to 1000 mm print height.
- Up to 70 mm print height without any printhead alignment.
- A wide range of inks available, from oil based-in different colours to UV solvent based for difficult substrates.
- All HSAJET® XAAR-based printers can be connected to any HSAJET® XAAR Electron, XJ128 or XJ500 controller.
- Non-contact coding. Ideal for rough surfaces like Tyvek, wood, pallets and cardboard.
- Three distance approximately 5 mm dependent on ink and line speed.
- Large ink supply, 0.5 to 1.5 litre ink bottles.
The HSAJET CU2 for HSAJET XAAR printers is a powerful stand-alone controller with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datatime, text, graphics, and barcode images. All CB2-based controllers are provided with OBJ InkDraw or Mail InkDraw software (up to 4 CB2).

Our flexible solutions are based on our CB2-XJ controller board, delivered in the OPC/RPC cabinet or delivered as an integration kit, which enables you to connect any kind of print head up to 280 mm / 11.1" print height. Print variables text, counters, datatime, shift codes, graphics, all barcodes.

CU2 / OPC / RPC for XAAR Printers XJ128 / XJ500

Our flexible solutions are based on our CU2-XJ controller board, delivered ready to use either as the OPC/RPC with one controller board, or installed in the OPC/RPC cabinet or delivered as an integration kit, which enables customer adapted solutions with multiple units for additional print height (up to 4 CU2).

Software

All CU2-based controllers are provided with OBI InkDraw or Mail InkDraw, which gives you full database connectivity and one of the most versatile software packages for inkjet printing available in the market. Print from a wide range of databases, such as SQL, Access, XLS and CSV.

CU2 XAAR Electron / XJ128 / XJ500 Controller Unit

Technology

XAAR Piece drop-on-demand

Drop volume (pL): leaves the printhead.

Max. frequency (kHz): measured in thousand per second (kHz).

Drop velocity (m/s): how many drops per second a print engine can produce.

Max. speed (dpi): how many drops per second a print engine can produce. Measured in thousand (1000) (second).

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Active nozzles: Number of nozzles that fire a drop.

Drop velocity (m/s): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): The module (head) that outputs the ink.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.

Glossary

Drop volume (pL): the linear speed of ink droplet as it leaves the printhead.

Max. speed (dpi): the maximum possible linear speed at a specific nozzle plate.

Engine: The area of the printhead that forms the ink drop through movement.

Penning: The module (head) that outputs the ink.
Glossary

What does it mean?

Inkjet
XAAR drop-on-demand Inkjet technology (see DOD inkjet technology).

DOD Inktet
Drop-on-Demand. The printhead can be precisely controlled to produce ink drops when required to produce high quality, reproducible images.

Piezo Electric
Mechanical distortion of the material results in the formation of a charge across the material, or vice versa. The most common material in general use is PZT (Lead Zirconium Titanate).

Purging
The process of forcing ink out of the nozzles, either by vacuum or pressure.

Drop Redundancy
This is where a particular area (pixel) can be printed by more than one nozzle. So if a nozzle is blocked the pixel can be printed by the other nozzle. This may take place on a different print head.

Resolution
The amount of detail that can be resolved out of an image, ie. the number of discrete drops of ink that are fired onto a controlled size of media (dots per inch).

Stitching
This is the strategy for managing of edge effects between print swaths. It is often called "soft-stitching" though this term actually describes a sub-set of the various strategies.

Substrate Voids
The surface to be printed upon for example paper, textile and plastic.

Swath
The band of print produced by one pass of a printhead.

Temperature Compensation
The way in which the printhead compensates for changes in the viscosity of ink due to temperature.

UV Curable Inks
After printing the ink is cured by exposure to strong UV-light. The advantage of UV-curable inks is that they "dry" as soon as they are cured they can be applied to a wide-range of substrates.

Swathe
The band of print produced by one pass of a printhead.

Technical Details

XAAR 128 printers
• Prints in any direction
• Ideal for sorting and back-marking applications, form print and small barcode printing
• Flexible and modular construction, connect 16 single 17.5 mm printers or combine printers in modules of up to 6 (70 mm print height).
• Maximum print height per controller or controller board is 280 mm
• 125 dip up to 90 mm at 150 pL drop size available

XAAR 500 printers
• Ideal for form print, addressing and large contrast-rich barcode & logo printing
• Flexible and modular construction, connect up to 4 x 10 mm printers for a maximum print height of 280 mm
• 125 dip up to 90 mm
• 40 or 80 pL drop size available

XAAR Electron printers
• High speed 1700 pL operation
• 125 dip up to 114 mm with high speed head
• 25% faster than regular X128-804

XAAR ELECTRON XAAR ELECTRON 128 XAAR 500

Revision
The amount of detail that can be resolved out of an image, ie. the number of discrete drops of ink that are fired onto a controlled size of media (dots per inch).

HSA Systems (head offices)
HSA Systems (subsidiary offices)

HSAJET® products based on XAAR piezo Inkjet technology & accessories

HSAJET® XAAR Piezo Inkjet
XAAR Piezo Inkjet is the HSA range of industrial piece print heads for outer case and product coding. Available in a wide range of print heights and configurations, HSA Systems provides one of the most flexible product coding solutions for this technology, able to meet the requirements in a wide range of industries. Piezo inkjet printers are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.

Due to the modular construction, HSA Systems can provide Piezo inkjet printing from 1.5 mm print height to more than 500 mm print height from the same controller. With a wide range of controllers to choose from, HSA Systems can provide a solution tailored to your production environment, from a simple terminal to fully database driven automation across the factory. All printers can be installed either in-line or off-line and offer great flexibility due to individual controlling of each head.
CU2 XAAR Printer / XJ128 / XJ500 Customer Unit

The HSAJET CU2 for HSAJET XAAR printers is a powerful stand-alone controller with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datatime, shift codes, graphics, all barcodes.

Our flexible solutions are based on our CB2-XJ controller board, delivered separately.

CB2 / OPC / RPC for XAAR Electron / XJ128 / XJ500
Prints variable text, counters, date/time, shift codes, graphics, all barcodes.

Any combination of print heads up to 280 mm / 11” print height.

TIPC15 has a 15” touch interface and handles any kind of print job, from print from database as well as remote communication via Ethernet and Serial connection.

The jobs are made directly on the unit and controls the printer directly. The TIPC15 is available as a stand-alone touch controller with keyboard and LCD display. It can control up to 140 mm print height.

Packaged as a compact model.

The HSAJET CU2 for HSAJET XAAR printers is a powerful stand-alone controller with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datatime, shift codes, graphics, all barcodes.

See detailed product flyers for more information.
CU2 XAAR Printer / XJ128 / XJ500 Controller Unit

The HSAJET CU2 for HSAJET XAAR printers is a powerful stand-alone controller with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datetimes, shift codes, graphics, all barcodes. CU2 is connected to the printer via Ethernet/Serial interface for remote communication.

Our flexible solutions are based on our CB2-XJ controller board, delivered with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datetimes, shift codes, graphics, all barcodes. CU2 is connected to the printer via Ethernet/Serial interface for remote communication.

CU2 / OPC / RPC for XAAR XJ500 and XJ500 Touch Controller

Our flexible solutions are based on one CU2-XJ controller board, delivered ready to use either as the TIPC5 with one controller board, or installed in the OPC/RPC cabinet or delivered as an integration kit, which enables customer adapted solutions with multiple cards for additional print heights up to 280 mm / 11” print height. Our flexible solutions are based on our CB2-XJ controller board, delivered with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datetimes, shift codes, graphics, all barcodes. CU2 is connected to the printer via Ethernet/Serial interface for remote communication.

1.4.2.1 HSAJET CU2X / CU2FLEXIBLE

See detailed product flyers for more information.

CU2 XAAR Printer / XJ128 / XJ500 Controller Unit

The HSAJET CU2 for HSAJET XAAR printers is a powerful stand-alone controller with keyboard and LCD display. It can control up to 140 mm print height in any head configuration. You can print counters, datetimes, shift codes, graphics, all barcodes. Content can be edited directly from the controller or using the built-in Ethernet/Serial interface for remote communication.

The TIPC5 has a 15” touch interface and handles any kind of print job, including print from database as well as remote communication via Ethernet and Serial connection. The jobs are made directly on the unit and controls any combination of print heads up to 280 mm / 11” print height. Prints variable text, counters, datetimes, shift codes, graphics, all barcodes.

Controller

- **CU2 XAAR Printer / XJ128 / XJ500 Controller Unit**
- **CU2FLEXIBLE**

See detailed product flyers for more information.

TIPC5 XAAR Printer / XJ128 / XJ500 Touch Controller

The TIPC5 has a 15” touch interface and handles any kind of print job, including print from database as well as remote communication via Ethernet and Serial connection. The jobs are made directly on the unit and controls any combination of print heads up to 280 mm / 11” print height. Prints variable text, counters, datetimes, shift codes, graphics, all barcodes.

Software

All CU2/XJ based controllers are provided with WEB InKDraw or Mail InKDraw, which gives you full database connectivity and one of the most versatile software packages for inkjet printing available in the market.

Print from a wide range of databases, such as SQL, Access, XML and CSV.

Technical Details

- **CU2 XAAR Printer / XJ128 / XJ500 Controller Unit**
- **CU2FLEXIBLE**

See detailed product flyers for more information.

Key features

- **XAAR Print Engines**
 - **Spindles**
 - XJ500
 - XJ128
 - XJ505
 - XJ128 & Electron

Glossary

- **Active nozzles**
 - Number of nozzles that fire a drop.

- **Drop velocity**
 - The linear speed of ink drop as it leaves the printhead.

- **Drop volume**
 - Size of each ink drop. Measured in picolitre (pL).

- **EngInES XAAR 128**
 - The umbilical is available in lengths of 10-150 cm.

- **UMBILICAL**
 - The umbilical is available in standard lengths of 10-150 cm.
 - The umbilical is available in additional lengths of 10-150 cm.

- **OPTIONAL LENGTHS**
 - The umbilical is available in standard lengths of 10-150 cm.
Technical Details

XAAR Electron features

- **XAAR ELECTRON 128**
 - Engine controls
 - AES
time
 - AES
time
 - AES
 - AES
 - AES
time
 - AES

- **XAAR ELECTRON 500**
 - Engine controls
 - AES
time
 - AES
 - AES
 - AES
 - AES

Glossary

What does it mean?

- **Inkjet**
 - Xaar uses drop-on-demand inkjet technology (see DOD inkjet technology).
- **DOD Inkjet**
 - Drop-on-Demand. The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.
- **Piezo Electric**
 - Mechanical distortion of the material results in the formation of a charge across the material, or vice versa. The most common material in general use is PZT (Lead Zirconium Titanate).
- **Purging**
 - The process of forcing ink out of the nozzles, either by vacuum or pressure.
- **Drop Redundancy**
 - This is where a particular area (pixel) can be printed by more than one nozzle. So if a nozzle is blocked the pixel can be printed by the other nozzle. This may take place on a different line.

Resolution

- The term actually describes a subset of the various strategies.

Swathe

- The band of print produced by one pass of a printhead.

Temperature Compensation

- The way in which the printhead temperature compensates for changes in the viscosity of ink due to temperature.

UV Cure

- The amount of detail that can be resolved out of an image, i.e. the number of discrete drops of ink that are fired onto a controlled use of media (dots per inch (dpi)).

Sticking

- This is the strategy for the managing of edge effects between print swathes. It is often called "soft-stitching" though this term actually describes a subset of the various strategies.

Substrate Width

- The surface to be printed upon for example paper, textile and plastic.

Seal

- The band of print produced by one pass of a printhead.

- The advantage of UV-curable inks is that they "dry" as soon after printing the ink is cured by exposure to strong UV-light.

Substrate Media

- The surface to be printed upon for example paper, textile and plastic.

Resolution

- The amount of detail that can be resolved out of an image, i.e. the number of discrete drops of ink that are fired onto a controlled use of media (dots per inch (dpi)).

Piezo润电 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron printers

- All Xaar printers are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.

XAAR 128 printers

- All printers can be installed either in-line or off-line and offer great flexibility due to individual controlling of each head.

XAAR 500 printers

- All printers can be installed either in-line or off-line and offer great flexibility due to individual controlling of each head.

XAAR 5000 printers

- All printers can be installed either in-line or off-line and offer great flexibility due to individual controlling of each head.

- All Xaar printers are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 128 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 500 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 5000 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 128 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 500 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 5000 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

- All Xaar printers are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 128 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 500 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 5000 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 128 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 500 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 5000 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR Electron

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 128 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 500 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

XAAR 5000 printers

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.

- All Xaar printers are used in numerous industrial applications. They eliminate the need for costly additional labelling, pre-printed stock and can replace old, single-message roller coders.

XAAR Inkjets

- The printheads can be precisely controlled to produce ink drops when required to produce high quality, repeatable images.